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ABSTRACT

A method is developed for the determination of sub-
optimal control laws for nonlinear dynamical systems. The
control lawsldetermined by use of this method are in time
invariant, feedback form and approximately minimize a per-
formance index which is the integral of a positive definite
function of the state plus a quadratic function of the control.
The basis of the proposed technique is a method for the
aetermination of approximate solutions for the associated
Hamilton-Jacobi-Bellman equation, The method is applied to
three examples, and the results are shown to compare favorably
with those obtained by use of other suboptimal control procedures.
The method developed in this paper is applicable, in a prac-
tical sense, to systems of higher than second order and seems
to hold promise as a means for solving a large class of

optimization problems.



SOME APPROACHES TO SUBOPTIMAL
FEEDBACK CONTROL OF NONLINEAR SYSTEMS

1. INTRODUCTION

Many studies concerning systems which are optimal in
some sense have appeared in the last several years. However,
much of the literature has dealt with theoretical aspects of
the optimal control problem, and comparatively few direct
applications of the theory to the synthesis of feedback control
systems have been presented. The purpose of this paper is to
present the results of a study of a class of optimization
problems directly related to the design of regulator type
control systems.

The synthesis of approximately optimal feedback
controls for aynamical systems governed by ordinary nonlinear
differential equations is considered. For most nonlinear
systems 1t is impossible to analytically determine the exact
optimal control lawj; consequently, the designer is faced with
the task of synthesizing a suboptimal control. Several methods
for determining approximately optimal feedback con?rol laws
for nonlinear systems have been proposed. The advantages
and limitations of several of the more successful of these
methods are discussed and a new technique which in certain
cases appears to possess advantages over existing methods

is presented.



2. PROBLEM STATEMENT.

This study is limited to controllable dynamical systems

governed by
_ dx
t

X = = f(x) + Bu, £(0) = 0 (1)

x(0) = X
where the x , the state, is an n-vector and wu, the control,
is an m-vector. The constant vector, Xy is the initial state
of the system, and B 1is a mxn matrix of constants. The .
optimal control problem associated with this dynamical system
is the determination of the control which will transfer the
initial state to some specified terminal set about the origin,
denoted by S8, and also minimize the integral performance
criterion

T

u,s) = [ [g(x) + u'Ruldt (2)
0]

J(XO,
where g(x) 0, x # 0 and g(0) = 0, and the mxn matrix R is
symmetric and positive definite. A prime denotes the transposé
of a matrix.

The suboptimal control problem associated with the
dynamical system defined by (1) and the performance criterion
(2) is the determination of a control which satisfies the

following properties: the control must transfer the initial state



to S, the control is .a function of the present state of the
system only; i.e., it is in a time-invariant, feedback form,

and the control is close to the optimal in some sense for a set
of initial states. 1In the present work a control is considered
close to the optimal if it approximately satisfies the conditions
which the optimal control must satisfy. Obviéusly there may be
many controls which satisfy the above criteria; however, from

a practical point of view, this is an advantage rather than a
limitation since a control can be chosen which best satisfies
criteria such as ease of implementation, reliability, and other

Important design criteria.

3. OPTIMAL CONTROL

Three techniques which have received the most attention
are the calculus of variations, Pontryagin's maximum principle,
and the Hamilton-Jacobi-Bellman approach. Under appropriate
assumptions on (1) and (2), each of these three methods gives
enough information to determine the optimal control. In what
follows we shall consider only the latter two approaches since
the calculus of variations and the maximum principle are similar
in application.

The minimum (or maximum) principle, as developed by
Pontryagin, et. al. [1], gives necessary conditions for the
optimal control. The optimal éontrol, u¥, is characterized by

the existence of a vector, p, such that the Hamiltonian function



H(x,p,u) = g(x) + u'Ru + p'f(x) + p'Bu (3)

is a minimum when wu(t) = u¥®(t). In addition, the state x and

the vector p satisfy the following set of differential equations
. oH
X = ga(x,p,u*) s x(0) = Xq @)
_ _9H % .
p = -==(x,p,u¥) , p(T) 1is normal to S . (5)

Since the boundary conditions on (4) and (5) are specified at
different times, solution of these equations may be difficult,
even by numerical means.

A generalization of the classical Hamilton-Jacobi
theory provides a somewhat different approach to the optimization
problem, and gives sufficient conditions for optimality. If the
minimum of the Hamilton function (3) with respect to u occurs
when u = k(x,p) and is denoted by H(x,p), and if there is a

twice continuously differentiable function, V(x,t), satisfying

v

oV
ot )

+ H(X,EE =0, V=0 on S (6)

%% denotes the gradient of V(x,t) ) , then the optimal control

is given by

u = k(x,30) . (7)



Thus, it i1s necessary to solve a first order, partial differential
equation which is in general nonlinear. Discussions of this

approach are found in [2,3,12].

4, SUBOPTIMAL CONTROL

The optimal control obtained by either of the above
approaches will rarely be in time-invariant feedback form, and
in most cases analytical computation of the optimal control law
is impossible. Thus, the designer is faced with the determination
of a suboptimal control. The methods which have been proposed
in the 1iferature for obtaining solutions to the suboptimal control
problem outlined above are essentially methods for obtaining
approximate solutions to the equations corresponding to either
(4) and (5), or (6). Several representative methods which
have been used to obtain suboptimal control laws satisfying the
deslred properties are discussed. The methods which are
considered are (a) linearization, (b) parameter optimization,
(¢) equivalent linearization, and (d) perturbation.

a. Linearization The non~linear dynamical system (1)

is approximated by a linear system of the form

x = Ax + Bu x{0) = x (8)

0

where A 1is a nxn constant matrix. The performance criteria

(2) is approximated by



T
J(xg,u,8) = [/ (x'Qx+u'Ru)dt (9)
‘ 0

where @ 1s a constant nxn, symmetric, positive-definite matrix.
The optimal control for (8) and (9) can be determined in feedback
form by using either the maximum principle or the Hamilton-Jacobi-

Bellman equation. The resulting control is given in [4] as

4 = -R1B'Px (10)
where P satisfies
P+ PA+ A'P - PBRIB'P + Q=0 , P(T) =0 . (11)

However, P 1is a function of time, and thus u 1is not time
invariant. This control can be made time invariant in two
ways. First, as T approaches infinity, it can be shown that
P approaches zero; therefore, if T 1s large the solution to
the algebraic matrix equation

PA + A'P - PBR™IB'P + Q = 0 (12)

can be used as the constant matrix P in (10). Second, the solution
of (11), P(t) can be averaged over the control interval [0,T]
in the following manner

T

P = % [ P(t)dt . (13)
0



Thus, the control obtained by using a constant matrix, determined
by either (12) or (13), may be employed as a suboptimal control
for the nonlinear system (1) and (2).

b. Parameter Optimization. Several parameter optimization

schemes have been proposed. One approach [5] has been to assume
a fixed form for the control containing an arbitrary constant

vector b, i.e.,
u = k(x,b) (14)

and then determine the value of b for which (2) is minimized.
Using the minimum principle, one must solve the equations
corresponding to (4) and (5) for some fixed X,
A similar approach has been considered in [6]. However,
instead of directly choosing a form for the control of a
solution to equation (6), denoted by V(x,b), 1s assumed which
involves an unknown constant vector b. Several methods are
suggested in [6] for choosing b so that (6) is nearly satisfied.
Again the choice of b depends on a particular initial state.
Both of these parameter optimization methods have the dis-
advantages that the problem of determining the minimizing
valﬁe of b 1is nearly as difficult as the original problen,

and the value of b depends on the initial state.

c. Equivalent Linearization. This approach is based

on the fact that the linear problem with quadratic performance

criteria (8) and (9), can be solved exactly as indicated in (a).



The nonlinear system (1) is approximated by
x = A(x)x + Bu , x(0) = Xg » (15)
performance criteria (2) is approximated by

J(xy,u,8) = [ [x'Q(x)x + u'Ruldt (16)
0
where Q 1s symmetric. A suboptimal control is obtained from
(10) A, Q, P are not constant but are functions of x. Thus,

1

u = -R™T"B'P(x)x (17)

where P(x) satisfies

1ptp(x)

P(x)A(x) + A'(x)P(x) - P(x)BR
(18)

+ Q(x) =0

An application of this approach is given in [7].

d. Perturbation. Another approach for obtaining a

suboptimal control is by use of an approximate solution of the
Hamilton-Jacobi-Bellman equation by means of power series
expansion [8]. The functions f(x) and g(x) are expanded
in a power series in x about some point, usually x = 0,

giving



fn(x) + Bu (19)

J[xo,u S] = f [x'Qx + Z

gn(X) + u'Ruldt (20)
n=3

where fn(x) is a vector with components which are polynomials
in x of degree n, and gn(x) is also a polynomial in x of
degree n. The parameter e has been introduced for bookeeping
convenience,

After minimization of the Hamiltonian, the Hamilton-

Jacobi-Bellman equation is

2 ax + 7 0 te ()] - 30 'BRTIB 2T + xtax
n=2
+ ] "% (x) =0 . (21)

n=3

A formal power series expansion for V(x) 1is assumed, that is

V(x) e(n_2>

]
IHe~18

v, (x) (22)

where Vn(x) denotes a general polynomial in x of degree

n with coefficients as yet unknown. A recurrence relation for
the unknown coefficients in (22) is generated by substituting
(22) into (21) and equating the coefficients of e to zero.
The resulting suboptimal control for some set of initial states

is given by
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' © 3V _(x)
w=-grter ] et (23)

5. A NEW METHOD

This method, called the combination method, is based on
methods (c¢) and (d), and seems to have certain practical advantages
over the methods previously discussed. The basic procedure

consists of approximating (1) and (2) by

x = AX + ef(x) + Bu , (24)
and
T
J(Xo,u,S) = [ [x'Qx + eg(x) + u'Ruldt . (25)
o

Again, the basic idea is to obtain a "good" approximate
solution to the Hamilton-Jacobi-Bellman equation by expanding
V(x) in a power series as in (22). The equation to be solved

is

9

<

1l 3V!

av? -1.,3V
+ —3-*}—(- [AX'+ Sf(X)] - -E--a-‘i BR

B'é—i + X'QX

[
ct

+ eg(x) = 0 . (26)

Assuming a formal power serles expansion as in (22) and equating

powers of € to zero,
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vV V! V! oV
_2 ., 2 1 2 o-1ln, 2 'Oy =
5T * 3% Ax - T 55 BR B = + x'Qx = 0
3V V! V! V! v
34+ 3 _2 1 __2 -1, 3
5T + 5% Ax + 5% £f(x) - T3 BR "B R
é A

- H P BR™ B'——— + g(x) =0 (27)
3V V! 3V} _ - n+2 3V 3V
.~._11 __.E k _11_,_3'__
S5 togy Ax o+ f( )y - E 2 55~ BR "B'gx= =0

132

where in the summation k + & = n + 2,
Writing f£(x) = C(x)x and g(x) = x'D(x)x, where

D(x) 4is symmetric, the previous equations become

vV ERTS 3V} oV
2, _2 1 __§ -lp,_ 2 10x =

T + 3% X - T3 BR "B % + x'Qx 0
oV V! 3V! av! 3V
B_E_— + —a—X— Ax + BX C(X)X - 'zr — BR B _BX

V! oV
- % 3}3 BR_lB'SEa + x'D(x)x = 0 , (28)

3V av! V! av! oV

n n n-1 k -1, & _
3T Fax AXf ox o COAx - gLy BR Bl = 0
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In order to determine VZ’ V3,.,°, Vn,.,o we solve these
equations successively, tfeating the matrices C(x) and

D(x) as constants. Each equation in (28), with the exception
of the first, is a first-order, linear, partial differential
equation. Although the first equation is not linear, it is the
same equation as one would obtain by solving (8) and (9) using
the Hamilton-Jacobi-Bellman equation. In 5rder to solve (28),

assume

v, = x'MnX (29)

where Mn is a nxn symmetric matrix, to be determined. This

leads to the matrix equations

y -1 1 : -
My + M,A + A'M, - MBRTB'M, + Q = 0
M. + M.(A-BR TB'M.) + (A'=M_BR™IB')M
3 3 2 2 3
= —M,C-C'M,-D (30)

Y -1 1 LI -1 3 =
Mn + Mn(A~BR B M2) + (A'-M,BR "B )Mn A

2 n

with M (T) = 0 for i =2, 3,..., O,...

n+2 -1
= ' -

and Q = ] MBR "B'M, - M
k>3

>3

C—C'Mn_ k+8 = n+2

l >
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The problem of obtaining matrices M2, M3,°°

which are not explicit functions of time and which "nearly"

s My,

satisfy (30) can be approached in two ways. First, Kalman [4]
has shown that the first equation of (30) has a unique positive
definite solution M,(t). For n>3, (30) is a set of linear
differential equations and thus, for each n, Mn(t) exists and
is unique. In order to determine constant matrices which are
close approximations to Mn(t) for each n, the following

technique can be used:

= |
==

o = fTMk(t)dt , k=2, 3,... . (31)
o
Second, if the final time, T, is sufficiently large, we can
assume that Mn = 0 for each n and (30) represents a set of
algebraic equations. Again, Kalman has shown that for Mz = 0,
the first equation of (30) has a unique solution. In addition,
the remaining equations in (30) have a unique solution for each
n as demonstrated by Lefschetz [9]. Lefschetz also shows that
if Q) 1is positive [negapiﬁe] definite, then M is negative
[positive] definite. Thus,'by computing Qn it is possible to
determine the effect of Mn without calculating thilis matrix.
Using either of the above approaches, a suboptimal

control 1is

o114, v _(n-2)3
u-——*§R B'ZE 3%

[x'M (x)x] . (32)
n=2
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In general Mn is a function of the state; therefore, u will

usually be a nonlinear function of the state.

6. ILLUSTRATIVE EXAMPLES

Since the details, advantages, and limitations of the
various schemes are best illustrated by examples, three nonlinear
systems are analyzed. Suboptimal control laws are derived by
use of the various methods outlined above, and the results
obtained by use of these laws are compared. The parameter
optimization schemes were tested using initial conditions
different from those for which the control law was originally
computed. This Waé done in order to see how well the control
laws calculated by parameter optimization perform for a varlety
of initial conditions,

Example 1: Consider the system described by
X =u - X (33)

where u 1s to be an acceptable solution to the suboptimal

control problem associated with the minimization of
1.0

= % f (x2+u2)dt for the target set S = R, the real line:
0
Linearization Considering only the linear part of
1.0
equation {33), x = u, and the performance index J = % J (X2+u2)dt.
0

From (10), u = -2P(t)x where from (11)
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_8(1-t)

101 .
L R

P(t) = i
2
1+e

averaging P(t) as in (13), P = 0.345, and therefore
u = -0.690x . (34)

Parameter Optimization. The above problem is

considered in [5]. The form of the control is assumed to be
linear, u = ax, where a 1s an unknown constant. For an
initial condition x(0) = 10.0, the control is found to be

u = -0,1038x.

Equivalent Linearization. The differential equation

describing the system 1s rewritten
X = u- aX, a = X . (35)

This equation is of the same form as (15) where A = -a and

1

B=1, If R=Q = 5 J is the same as (16); consequently,

from (17) and (18)

u = —[/X2+1—x]X . (36)

Perturbation. Equation (33) may be recast in the form

B =1, f2(x) = —x2, f_ =0 for

0, n
L
2 ..

of (19) by noting that A

2<n, g = 0, Q = %, and R Substituting the V(x) from



(22) into (21) and equating the coefficients of powers of

zero, the following equations are obtained

29X 2
3V2 5 3V X2 _ 8V2 3V3 .
3x x - 3% 9X 98X

2
Letting V2(x) = a,x , V3 = a3x3 , from equations (37)

=1 = 1
8y =5, a3 = -%, thus, from (23) the control is

Combination Method. The above solution may be

improved by rewritting (33) as

VvV oV

2 _ l( 2)2 + x2 = 0
3t 2 9x 2
A RLAF NS N
ot 9X 34X X

to

(37)

(38)

(39)

(40)

(41)
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Assuming V, = M2x2 and V3 = M3x2 and substituting into (40)
and (41),
M, - 2M2 + % = 0 M,(1) = 0 (42)
2 2 2 2 2 ?

M3 - 2Mya - 4M2M3 =0 , M3(1) =0 . (43)
Solving (42) for M2(t) and averaging as in (31),
M, = 0.345. Substituting M, into (43) and solving
Ma(t) = 0.50(el38(t=1) 4,
and averaging M3(t) over [0,1], MS = - 0.105a. From
(32), the suboptimal control for e = 1 is
u = -0.69%x + 0.315%° . (44)

In order to determine the effectiveness of the above
suboptimal control laws, a digital computer simulation of the
system was carried out. The results are summarized in Table 1.
It should be noted that the performance of the various methods
depends largely upon the initial condition on x. For an
initial condition of 0.5, the control determined by the
perturbation method gives a substantially smaller value to the
performance index then the control determined by the parameter

optimization method; however, for an initial condition of 5.0,
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the parameter optimizétion method gives much better results than
the perturbation method. The equivalent linearization,
combination, and lineariéation methods all give good results.
Choice of a control law for this problem would probably be made
from one of these three methods depending upon the range of
initial conditions expected and upon the form of control desired.
Typical solutions are compared in Fig. 1. In Fig. la
trajectories are plotted versus time and it is seen that all
the trajectories are close to one another; however, in Fig. 1b
where the various control laws are plotted versus time, the

control laws are shown to vary considerably.

TABLE 1

Performance Index 4

Initlial Conditions
Method Control Law 0.5 5.0
Parameter
Optimization -0.1038x .0870 3,2220
Equivalent 5
Linearization| -[V/x“+1-x]x L0772 2.0461
Perturbation | -x + x° 0762 |47.9102
Combination -0.69x + O.315x2 L0741 2.6787
Linear -0,69x 1 .9760 2.5104
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Example 2. A system governed by an equation of the

Van der Pol type is considered; the equations of state are

o
il

(1-x§)x2 - x, +u (45)

2

2+u2)dt. The target

and the performance index is J = % fw(xi+x
set is the origin. °

The control laws derived by use of the various methods
are summarized in Table 2. The parameter optimizatioﬁ solutibn
was calculated in [6] for initial conditions x(0) = 1.75
and XZ(O) = -2.,0, This problem was also solved by equivalent
linearization in [7]. The values of the performance index
obtained by use of the various control laws are also presented
in Table 2. The perturbation scheme gives the best results;
however, both the combination and equivalent linearization
procedures give results which are almost as good, and these
methods involve considerably less calculation. The linearization
method also gives good results. On the other hand, the
parameter optimization technique appears to give the poorest
results and is computationally the most difficult.

Typical solutions are compared in Fig. 2. In Fig.
2a, a phase-plane plot is presented. All of the methods

except parameter optimization give trajectories which are

so close to one another as to be indistinguishable. 1In



Fig. 2b, the various control laws are plotted versus time.

20

It

is seen that in constrast to example 1, the controls are close

to one another, and the largest variations occur in the first

second of operation.

—2.685+1.O86x§x2

3
+O.583x1x2+0.072x2

Table 2
Performance Index
Initial Conditions
Control Law Method xl=.5 x1=1.0
x2=.5 x2=1.0
—O.Mlﬂxl
—2.685x2 Linear .8008 2.7026
—O.”14X5~2.685X2
+1,586xlx2
—O.l9ﬂxix2 Combination . 7982 2.6335
—O.Mlux1+[l—xl)2 Equivalent
—/2.828—x§]x2 Linearization| .7977 2.6188
. —1,422}(1-3.808){2 Parameter
+O.2192xg Optimization | .9194 3.1259
—O.Mluxl Perturbation L7971 2.5731
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Example 3. The final example is concerned with the
synthesis of the control logic -for a regulator system using
‘a field-controlled, D-C motor as a source of control torque.

The equations governing such a system are

. K X
: E . ™y . .2
Je + CO = K, =— 1. - kA
TR, Tr T & %
(L46)
ai.
Le gt + Belp = €¢

where J = moment of inertia of the load, C = coefficient of
viscous damping, o = angular velocity of load, E = constant
voltage applied across armature, Ra = armature resistence,
Rf = fileld resistence, L

current, e

F= field inductance, if = field

= voltage applied across field terminals, K_ =

f v

motor voltage constant, and K ; = motor torque constant.

KpKy 512
| %
a

neglected; however, as is shown this term can affect

T

Usually Ra is assumed large and the term is

performance and consequently is included in the analysis.

Equation (46) can be written

X = %
i2 = -ax, + dx, + sxgxg (47)
i3 = --TX3 + bu
c Kplt
where X, = e, Xy = o, x3 = if, ep = U, 2 = 7, 4 = BT
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KK R
Ty £ : 1
e == , T=x=, and b= —,
RJ Ly L

to be a solution to the suboptimal control problem associated

We wish to choos u 80 as

H

with this minimization of J = f?x'Qx+UGﬂDdt.' Q is a positive
definite, diagonal matrix, and (g is the zero vector. Since
the system is third order, it is virtually impossible to apply
equivalent linearization and obtain analytical results. Also,
the amount of work in applying perturbation or parameter
optimization techniques is prohibitive. Consequently, the
control will be synthesized first by finding the optimal
control for the linear portion of the system and then applying

the combination ﬁechnique. For the following choice of

parameters in (47),

oy
I
O
1
 E——
oo
OO
OO
(I

and ¢ = 0.2, the linearization procedure yields

u= -0.8722x, - 2.1206x2 - 1.000x

3 2

Taking into accouht the system nonlinearity and

applying the combination technique
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u = -0.8722x, - 2.12O6X2 - 1.000x

3 1

+ 0.2((0.905x§—66.825x§+0.90“9x1x2)x3

+ 1.8098x3+9.666x %)
Results of a computer simulation of the above system
are summarized in Table 3. It may be seen thaé the combination
method gives the smallest value of the performaﬁce index;
however, the linear control is of considerably simpler form.
From Fig. 3a and Fig. 3b, graphs of angular error versus time
and angular velocity error versus time respectively, it 1is
seen that the linear procedure gives "closer" control, but

Fig. -3¢ shows that the linear method demands a larger control

voltage than does the combination method.

PERFORMANCE INDEX
Initial Conditions .
x.=.1 x.=,1 |x,=.25 x,=.1 |x,=0.5 x.=0.1
Method of Control 1 3 1 3 1 3
Xa=.1 X,=.25 x~,=0.5
2 2 2
ILinear .2293 1.1297 4,1941
Combination .2288 1.1259 4,0627

TABLE 3
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7. CONCLUSIONS
The linearization method gives surprisingly good results

and 1s simple in form. On the other hand, the parameter
optimization methods give ?oor values for the performance index
for initial conditions greatly different from those for which the
control law was originally computed. The equivalent linearization
technique gives good results but is extremely difficult to use for
systems of higher than second order, since for a system of order

n the technique requires the analytic solution of a set of

2
2 ;n nonlinear, algebraic equations. The perturbation method

also gives good results but is computationally unhandy. The
results given by the combination method compare favorably with
those obtained by the perturbation and equivalent linearization
methods, and furthermore, use of the combination method is
computationally feasible for systems of high order. On the
other hand, the method sometimes gives complex control laws with
1itt1e or no decrease in the performance index when compared to
the linearization method. In the last analysis, choice of a
control law depends upon the range of initial conditions
expected, the simplicity of control law desired, and the
importance of minimizing the performance index. However, the
combination method seems to hold promise as a method for solving
a large class of optimization problems.

Nothing has been said regarding the convergence
properties of the various suboptimal control schemes. First,

little is known about their convergence properties. Convergence
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to the optimal control in some small region about the origin has
been established only for the perturbation method. Second,
convergence 1s not of primary importance, since in practice,
only a few terms can be used in choosing the suboptimal control.
.An additional point that has not been considered in detail is the
satisfaction of the terminal constraint, that is, the transfer
of the state to the target set. 1In general, the terminal
constraint will not be satisfied for all initial conditions, so
any suboptimal control would be limited to the set of initial
states for which the terminal conditions is satisfied. In the
case where the final time approaches infinity, the suboptimal
control is valid only for initial conditions in the domain of
asymptotic stability.

The problem considered in this paper has been the
transfer of an initial state to some set containing the origin,
using a feedback control. This problem has many applications
in its own right; however, the techniques which have been
considered in this paper are also applicable in determining
a feedback controller which operates in a neighborhood of a

reference, open-loop optimal trajectory [11].
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